Effect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation
Authors
Abstract:
The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone thermodynamic model with detail chemical mechanism is developed to investigate the effect of hydrogen addition to natural gas in a homogeneous charge compression ignition combustion and to analyze the performance and emissions of the HCCI engine. The effect of five different percentage of hydrogen added to natural gas ranging from 0 to 40 on HCCI combustion is investigated in this study. The results indicate that by increasing hydrogen portion in intake mixture, start of combustion advances and maximum temperature increase, but increasing in maximum pressure is negligible. Carbon’s included emissions such as Co, Co2 and unburned hydrocarbons decreases by increasing of hydrogen, and also, specific fuel consumption decreases. The result shows that hydrogen improves combustion characteristics of natural gas in an HCCI engine and leads to better performance and less emissions.
similar resources
effect of hydrogen addition to natural gas on homogeneous charge compression ignition combustion engines performance and emissions using a thermodynamic simulation
the hcci combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis hcci combustion. a single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. in this study a single-zone ...
full textThe effect of hydrogen and nitrogen addition on heavy duty diesel engine emissions under reactivity controlled compression ignition combustion
The aim of this study is to evaluate a heavy duty diesel engine operation under reactivity controlled compression ignition combustion fueled with diesel oil and natural gas enriched with hydrogen and nitrogen addition. In this study, a single cylinder heavy– duty diesel engine is set to operate at 9.4bar gross IMEP (Mid- Load). The amount of injected diesel oil per cycle into the engine combust...
full textExperimental Study of Hydrogen Addition Impact on Emissions and Performance of a Natural Gas Fueled Engine
Hydrogen is seen as one of the important energy carriers of the future with potential to reduce local as well as global warming. The main by-product of the combustion of hydrogen in air is water vapor and trace quantities of oxides of nitrogen. An experiment was conducted to study the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in ...
full textStudying the Effect of Reformer Gas and Exhaust Gas Recirculation on Homogeneous Charge Compression Ignition Engine Operation
Combustion in homogeneous charge compression ignition (HCCI) engine is controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily especially at lower and higher engine load. Charge strati...
full textTheoretical study of the effect of hydrogen addition to natural gas-fueled direct-injection engines
The preparation of air–fuel mixture is considerably dependent on fluid flow dynamics to achieve improved performance, efficiency, and engine combustion in the appearance of flow. In this study, the effects of mixtures of hydrogen and compressed natural gas (CNG) on a spark ignition engine are numerically considered. This article presents the results of a direct-injection engine using methane–hy...
full textHomogeneous Charge Compression Ignition (HCCI) Combustion Engine- A Review
At present, it is highly required from the automobile sector to develop clean technologies with lower fuel consumption for ambient air quality improvement, green house gas reduction and energy security. Furthermore, due to continuously stringent emission legislation and the fast depletion of the primary energy resources, the development of new highly efficient and environment friendly combustio...
full textMy Resources
Journal title
volume 1 issue 2
pages 105- 114
publication date 2011-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023